

MARANDA HIGH SCHOOL

Kenya Certificate of Secondary Education PRE-MOCK EXAMINATIONS 2024

232/3

PHYSICS

Paper 3

March/April 2024 - 21/2 Hours

Name:	Adm No:
Class:Candidate's Signature:	

INSTRUCTIONS TO CANDIDATES

- Write your name and index number in the spaces provided above.
- Sign and write the date of examination in the spaces provided
- Answer <u>ALL</u> the questions in the spaces provided in the question paper
- You are supposed to spend the first 15 minutes of the 2 ½ hours allowed for this paper reading the whole paper carefully before commencing your work.
- Marks are given for a clear record of the observations actually made.
- Non-programmable silent electronic calculators and KNEC Mathematical tables may be used except where stated otherwise.

FOR EXAMINERS USE ONLY

QUESTION 1

	d	e	f	g	TOTAL
Maximum Score	130	5	6	2	20
Candidate's Score	N				

QUESTION 2

20 K//	c	d	e	TOTAL
Maximum score	7	5	8	20
Candidate's score				

TO	TAL SCO	RE

PRE-MOCK EXAMS 2024 P

PHYSICS 232/3

^	-
Onestion	1

You are provided with the following apparatus:

- A bi convex lens
- A plane mirror
- Complete retort stand
- Some glycerine in a beaker
- Half meter rule
- Manilla card
- Two wooden blocks
- A dropper

Proceed as follows:

a)	Estimate the focal length, f of the lens provided.	
	f =cm	(1 mark)
b)	With aid of a diagram, describe the method you used to estimate f in (a).	(2 marks)
	$\langle X \rangle$	
••••		
••••		
••••		
••••		

- c) Clamp the wooden blocks so that they hold the manilla card horizontally, with the calibrated side upwards.
- d) Place the plane mirror on a horizontal surface directly below the object manilla card and place the lens at the centre of the mirror as shown in **figure 1.**

Figure 1

- e) Measure a height h, where h = 15 cm measured from the surface of the mirror.
- f) Keeping your eye about 0.50 m from the mirror, adjust the position of the mirror and lens so that you can see an image of the card in the central region of the lens.
- g) By means of the millimeter scale on the top side of the object manilla card, determine the width of the image.
- h) Repeat the experiment to obtain a series of corresponding values of h and b. Record the results in table 1.

Note: invert the card for the images larger than the object so that the calibrated side faces the mirror

Determine the image width by relating to the object width.

Table 1 (3 marks)

Height h (cm)	15.0	17.5	20.0	22.5	25.0	27.5
Width b (mm)						

i) Plot a graph of width, b against height, h

(3 marks)

- j) Remove the lens and put a few drops of glycerine in the centre of the mirror. Replace the lens on top of the glycerine so that the glycerine fills the central region of the lens.
- k) Repeat step (e) to obtain a series of corresponding values of h and new image width b. record the results in table 2 (3 marks)

Table 2

Height h (cm)	15.0	17.5	20.0	22.5	25.0	27.5
Width b (mm)						

1) Using the same axes as in (g) plot a graph of width,b against height, h

(2 marks)

m)	From the graphs, determine:	
	(i) h_a the value of h when b = 10 mm (for air)	- alk
	$h_a =$ cm	(1 mark)
	(ii) h_g the value of h when b = 10 mm (for glycerine)	
	$h_g = \dots $ cm	(1 mark)
n)	Determine the constant k for glycerine from the expression $k = 2 - \frac{h_a}{h_g}$	(2 marks)
	_ \(\sqrt{\sq}}\sqrt{\sq}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}	•••••
o)	Find the gradient of the graph for glycerine when the height h = 18cm	(2 marks)
	RAMORINA	
	SPAN STATE OF THE	
1	H.	

Question 2

PART A

You are provided with the following apparatus:

- Metre rule
- Thread
- A complete retort stand
- Two masses, a 50g and 20g mass
- Water in a beaker
- Liquid X in a beaker
- a) Suspend the metre rule so that it balances at its centre of gravity G. Read and record the value of G.

b) Suspend the 50g mass at a distance d = 10 cm, then suspend the 20g mass and adjust its position such that the metre rule is balanced as shown in the **figure 2**

Figure 2

c) Record the distance distance d_1

d) While maintaining the distance d, immerse the the 50g mass completely in water, as shown in the **figure 3**.

e) Adjust the position of the 20g mass to balance the metre rule again. Record the new distance

 $d_2 = \dots$ cm (1 mark)

f) Using the results obtained above, calculate the value of W_1 , weight of the 50g mass in water. (2 marks)

g) Determine the upthrust U_1 on the 50g mass in water. (1 mark)

h) Repeat steps (d), (e) and (f) but now the 50g is totally immersed in liquid X as shown in the **figure 4**

Figure 4

1)	Using the results obtained above, calculate the value of W_2 , weight of the $50g$ mass in liquid X.(1 m	iark)
j)	Determine the upthrust U_2 on the 50g mass in liquid X. (1 mar	rk)

· W	

k)	Given that $\rho_L = \frac{U_2}{U_1} \times \rho_W$ where $\rho_W = 1000 kgm^{-3}$. Calculate ρ_L	(1 mark)

PART B

You are provided with the following:

- four 10Ω resistors
- a resistance wire labelled Q mounted on a half metre rule
- a resistance wire AB mounted on a metre rule
- two dry cells and a cell holder
- a centre zero galvanometer G
- 8 connecting wires each with a crocodile clip at one end
- a jockey
- a micrometer screw gauge
- a switch

Proceed as follows:

a) Set up the circuit as in **figure 5** in which **R** is near A and Q is near B. (**R** is a 10 Ω resistor or an appropriate combination of 10-ohm resistors).

Figure 5

- b) Starting with a single 10Ω resistor as **R**, close the switch. Using the jockey tap wire AB briefly near end A and observe the deflection on the galvanometer. Now tap the wire near end B and again observe the deflection of the galvanometer. (*The two deflections should be in opposite directions*)
- c) Still with the 10Ω resistor as **R**, tap at various points along wire AB to obtain a point P at which the galvanometer shows zero deflection. Measure and record in **table 3** the length **L** between A and P.

	_										_
d)	Repeat part	(c) to	obtain	L for	other	values	of R	shown	in	table	3.

(3 marks)

$\mathbf{R}(\Omega)$	5	10	15	20	25	30
L (m)						
$X = \frac{1}{L}(m^{-1})$						27/4
$Y = \frac{1}{R}(\Omega^{-1})$						2
$Z = \frac{X}{Y}$					18/13	

e)	Deter	mine
\sim	Deter	1111110

(i) $\frac{1}{L}$ for all values of L

(1 mark)

(ii) $\frac{1}{R}$ for all values of R

(1 mark)

(iii) $\frac{X}{Y}$ for all sets of values of X and Y

(1 mark)

f) Calculate the average value of Z and state its unit

(2 marks)

	100
(

g) (i) Using the micrometer screw gauge provided, measure and record the diameter **D** of wire Q in millimetres .

(1 mark)

(ii) Record D in metres.

(1 mark)

h) Determine the value of constant **K** given that: $4\mathbf{K} = \pi D^2 Z$

narks)
narks)

.....