

MARANDA HIGH SCHOOL

Kenya Certificate of Secondary Education PRE-MOCK EXAMINATIONS 2024

232/1

PAPER 1 **PHYSICS** MARCH/APRIL 2024 TIME: 2 Hours

Name:	Adm No:
Class:Candidate's Signature	e:/2024.

Instructions to candidates

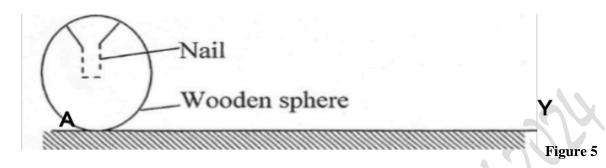
- a) Write your name and admission number in the spaces provided above
- b) This paper consists of two sections A and B.
- c) Answer ALL questions in both section in the spaces provided
- d) All working MUST be clearly shown.
- e) Silent non-programmable electronic calculators may be used
- f) This paper consists of 14 printed pages. Candidates should check the question paper to ascertain all the pages are printed as indicated and no questions are missing.

FOR EXAMINER'S USE ONLY.

Section	Question	Maximum score	Candidate's score
A	1-12	25	
0 K///	13	11	
	14	12	
	15	12	
В	16	9	
	17	11	
Total score	ı	80	

SECTION A (25 MARKS)

(Answer all questions in the spaces provided)


1. **Figure 1** shows part of the main scale of a vernier calipers.

	Insert the vernier scale to the main scale, to show a reading of 0.24cm. (2 marks)
2.	Explain why steel is selected as a better material for reinforcement of a concrete beam (1 mark)
3.	Figure 2 shows two aluminium containers A and B placed on a wooden table. The containers A
	and B have equal volumes of hot water initially at the same temperature.
	Figure 2
	Wooden table
	Aluminium container /
	Explain which water in the two containers cools faster than the other after some time (2 marks)
4.	Explain why kinetic energy is not conserved during inelastic collision (1 mark)
5.	Two samples of bromine vapour are allowed to diffuse separately under different conditions. One
	in a vacuum and the other in air. State with a reason the condition in which bromine will diffuse
	faster. (2 marks)

6.	a) A stone and a feather are dropped from rest from a building 20m tall. If at the same time, state the condition under which they fall	(1 mark)
	b) Figure 3 shows a velocity–time graph for a certain object	
	V(m/s)	1000
		Figure 3
	Describe the motion of the object.	(2 marks)
7.	Figure 4 shows a system in equilibrium.	
	Metre rule Pivot	
		ater Figure 4
	When the temperature of the water is raised the system is observed to	o tilt to the right, state
	the reason for this observation.	(2 marks)

8. **Figure 5** shows a wooden sphere with a nail hammered into it at **point A** as shown.

The sphere is rolled on a horizontal ground and comes to rest after some time at **point Y**. Draw the sphere after it comes to rest at **point Y**. (1 mark)

9.	a) State	the reason why it may be very difficult to suck a liquid using a drinking	g straw on the
	surface o	of the moon	(1 mark)
	b) Figu	re 6 shows a car braking system. The brake fluid is an oily liquid	
		Brake pedal Return spring Brake drum Brake shoe Pivot Brake fluid Slave piston	
	08	Master piston Master cylinder Figure 6	
	i.	State the principle by which a car braking system works.	(1 mark)
	11.		
	ii.	Explain why the master piston is wider than slave piston	(1 mark)

i	ii.	State the function of the return spring in the system	(1 mark
10. F i g	gure 7	shows a stone of weight W placed on an inclined plane and the angle of inclin	nation
is	θ.		
		Figure 7	
a)	Indic	ate with arrows, two other forces acting on the stone	2 marks)
b)		how the forces in $\bf a$) above is affected when angle $\bf \theta$ increases (1 mark)
	udy the	e set up in Figure 8 and use it to answer the questions that follows: Figure 8	
a)	State	what the experiment illustrates.	(1 mark)
	•••••		

b)	Which cork between A and B fell off first? Explain	(2 marks)

12. **Figure 9** shows a metal wire structure with a loop of thread inside after it was dipped into a soap solution.

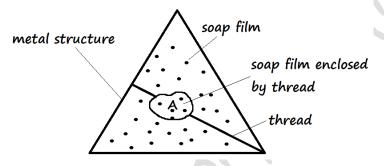


Figure 9 Sketch the appearance of the thread loop after the film is broken at ${\bf A}$

(1 mark)

SECTION B (55 MARKS)

Answer all questions in the spaces provided

13.	a)) State the Archimedes principle	(1 mark)
	• • • •		
			1 1 9
	b)	-	
		is held on the surface of the water in a long cylinder.	O.
		Wooden Cube Water	
		Figure 10 Explain what happens to the cube after it is released.	(2 marks)
	c)	Figure 11 shows a cork floating on water and held to the bottom of the	
		cork	·
		thread	
7	X	water	
	;	i. Name three forces acting on the cork.	(3 marks)
	1	1. Ivalie unice forces acting on the cork.	(3 marks)

ii.	Describe how each of the forces mentioned in i) above changes when	water is added
	into the beaker until it fills up.	(3 marks)
d) Fig	ure 12 shows a tube of varying cross sectional area V ₃ V ₄ Figure 12	
i.	Arrange the speed V ₁ , V ₂ , V ₃ and V ₄ in decreasing order starting with t	he highest.
		(1 mark)
ii.	State one application of fluid flow	(1 mark)
a) A ca	ar is negotiating an unbanked circular track.	
i.	State two factors that will determine the critical speed of the car.	(2 marks)
	·	
ii.	Figure 13 shows a car of mass m moving along a curved part of the ro	ad with a
	constant speed	

14.

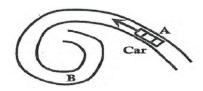
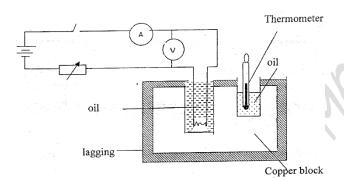


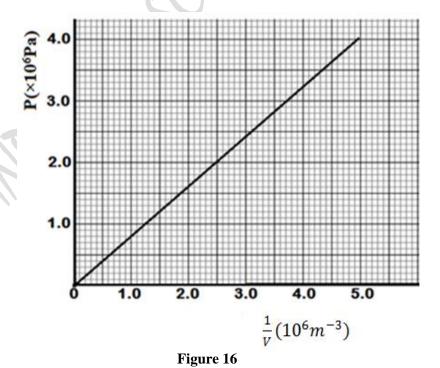
Figure 13

	State in which part, A or B of the road, is the car most likely to skid off if the	speed is no
	changed.	(2 marks)
b)	Given that the car in a) above has a mass of 800kg and the circular path is of a	adius 25m
	Determine the maximum speed with which the motorist can travel so as not to skid	l off. Giver
	the frictional force between the tyres and the road is 6500N.	(3 marks)
		•••••
c)	A 200g mass tied to a string is being whirled in a vertical circle of radius 32cm w	ith uniform
	speed. At the lowest point, the tension in the spring is 10.5N. Determine:-	iui uiiiioiii
i.		(3 marks)
1.		, ,
ìì.	ii. The tension in the string when the mass is at the uppermost position of the ci	-
	$(take g = 10ms^{-2})$	(2 marks)
1		• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •

metallic vessel	(1 mark)
b) Figure 14 shows a block of ice with two heavy weights hanging such that the	copper wire
connecting them passes over the block of ice.	3
Copper wire	
Ice block	
Weight Wooden support	
Figure 14	
It is observed that the wire gradually cuts its way through the ice block, but le	eaves
it as one piece.	
	eaves (2 marks)
it as one piece.	
it as one piece.	
it as one piece.	
it as one piece. i. Explain this observation.	(2 marks)
it as one piece. i. Explain this observation.	
it as one piece. i. Explain this observation. ii. State the effect of replacing the copper wire with a cotton thread	(2 marks)
it as one piece. i. Explain this observation. ii. State the effect of replacing the copper wire with a cotton thread	(2 marks)
it as one piece. i. Explain this observation. ii. State the effect of replacing the copper wire with a cotton thread	(2 marks)
it as one piece. i. Explain this observation. ii. State the effect of replacing the copper wire with a cotton thread	(2 marks)
it as one piece. i. Explain this observation. ii. State the effect of replacing the copper wire with a cotton thread	(2 marks)

d) **Figure 15** shows a set-up that can be used to determine the specific heat capacity of a metal block.




Figure 15

1.	State two measurements that should be taken in the experiment to determ	ille the specific
	heat capacity of the block.	(2 marks)
ii.	Explain how the measurements in i) above can be used to determine the	
	capacity of a metal block.	(2 marks)
		•••••
h		
iii.	State the functions of the following in the set-up.	(2 marks)
	a. Lagging	
	b. Oil	

16. a) Define the term 'idea	l gas'	(1 mark)

b)	A gas occupies a volume of 4,000 litres at a temper	erature of 37°C and standard pressure o
	$1.02 \times 10^5 \text{Pa}$. Determine the new volume of the ga	as if it is heated at constant pressure to
	temperature of 67 ⁰ C	(3 marks)

c) The pressure acting in a gas in a container was changed steadily while the temperature of the gas was maintained a constant value. The values of volume V of the gas were measured for various values of pressure. The graph in **figure 16** shows the relationship between the pressure P and the reciprocal of volume $\frac{1}{V}$

i. Suggest **one** way how the temperature of the gas is kept constant (1 mark)

ii.	Given that the relationship between pressure P and volume V is given by $PV = k$,			
	where k is a constant. Use the graph to determine the value of \boldsymbol{k}	(3 marks)		
iii.	Identify the physical quantity represented by the constant k	(1 mark)		
17. Figu i	re 17 shows a block and tackle made up of three pulley wheels on top	and two pulley		
	Load Figure 17			
70				
a) Co	omplete the diagram by drawing the chain which passes over the whee	els and indicate where		
,	e effort is applied	(2 marks)		
b) W	hat is the velocity ratio of the system?	(1 mark)		
c) A	load of 1120N is lifted by an effort of 250N . Determine	••••••		
i.	The mechanical advantage (M.A.) of the system	(3 marks)		

ii.	The efficiency, E, of the system	(3 marks)
iii.	How much percentage energy is wasted in the above system	(1mark)
		•••••
iv.	Using the axes given in figure 18, sketch a graph of efficiency,	against load for the
	system	(1 mark)
	†	
	100+	
	EFFFICIENCY(%)	

LOAD (N)

THIS IS THE LAST PRINTED PAGE