MARANDA HIGH SCHOOL PAPER 121/1 MOCK 2024 MARKING GUIDE

	WORKINGS		REMARKS
1.	$\frac{15+a}{5} - \frac{80+a}{20} = 2$	M1	√Expression as
	20(15 + a) - 5(80 + a) = 200 $300 + 20a - 400 - 5a = 200$	M1	improper fractions √Removal of the denominator
	15a = 300 $a = 20$	A1	√C.A.O
		03	
2.	Fraction of the boys absent $=\frac{1}{6}$		
۷.	Fraction the students absent who are boys $\frac{1}{6}x\frac{3}{10} = \frac{1}{20}$, -
	Fraction of students absent who are girls $\frac{2}{5} \times \frac{7}{10} = \frac{7}{25}$	B1	$\sqrt{\text{Both}} \frac{1}{20} \text{ and } \frac{7}{25} \text{ seen}$
	Fraction of students absent = $\frac{1}{20} + \frac{7}{25}$ = $\frac{33}{100}$	M1	√Fraction for absent students
	If $\frac{33}{100} = 99$		
	$\therefore \frac{100}{100} = \frac{100}{100} \times 99 \times \frac{100}{33}$	A1	√C.A.O
	= 300 students.	AI	VC.A.U
		03	

3.	$\sqrt{a} = \sqrt{64x3}$		
	a = 64x3		
	9a = 9x64x3	M1	√9a
	$=3^3x4^3$		
	$\sqrt[3]{m} = \sqrt[3]{3^3 x 4^3}$	M1	√Cube root by
	m = 3x4		factorization
	=12	A1	√C.A.O
		03	
4.	$AB = 30 \tan 60^{\circ}$	M1	√Expression for the base
	$\tan 42^0 = \frac{30 + x}{30tan60^0}$		
		M1	$\sqrt{Expression}$ for the
	$x = 11328mm \ or$		height above the tower
	x = 11.328m	A1	√C.A.O
		03	
5.	$y - 2x \le 1$		
	$y \\ 7 \\ 6 \\ y \ge 2$	B1	$\sqrt{y} - 2x \le 1$ drawn and shaded
	x + y < 7	B1	$\sqrt{x+y} < 7$ drawn and shaded
	-1 0 1 2 3 4 5 6 7	B1	$\sqrt{y} \ge 1$ drawn and shaded
		03	

	J: K = 4: 5		
6.			
	$\frac{J}{K} = \frac{4}{5}$		
	$5J - 4K = 0 \dots (i)$		<i>(</i> -
	J – 5 7	M1	√Formation of two
	$\frac{J-5}{K-5} = \frac{7}{9}$		simultaneous equations
	$9J - 7K = 10 \dots (ii)$		from the ratios
	-J = -40	M1	attempt to solve for
	J = 40		one of the unknowns
	K = 50	A1	√C.A.O
		03	
7.	$\frac{36+x}{x} = \frac{32}{16}$	M1	√Use of LSF
	$x \qquad 16$ $32x - 16x = 576$		
	x = 36		
	$H = \sqrt{72^2 - 16^2}$	M1	√Expressions of the
	$h = \sqrt{36^2 - 8^2}$		heights
	$V = \frac{80}{100} X_{\frac{1}{3}}^{\frac{1}{3}} X_{\frac{22}{7}}^{\frac{22}{7}} (16^2 \sqrt{72^2 - 16^2} - 8^2 \sqrt{36^2 - 8^2}) \text{cm}^3$	M1	√Substitution into V
	= 13.2 l	A1	√C.A.O
		0.4	
	r. 7k−5 o . k−1	04	
8.	$\left(\frac{5}{3}\right)^{7k-5} = \left(\frac{9}{25}\right)^{k-1}$		
	$\frac{5^{7k-5}}{3} = \frac{3^{2k-2}}{3}$	M1	√Expression of both
	$\frac{1}{3^{7k-5}} = \frac{1}{5^{2k-2}}$		sides to base 3 & 5
	$\frac{5^{7k-5}}{3^{7k-5}} = \frac{5^{-2k+2}}{3^{-2k+2}}$	M1	√Application of the
	$3^{7k-3} 3^{-2k+2}$ $7k - 5 = -2k + 2$	101 1	inverse law of indices
	-		
	$k = \frac{7}{9}$		on any side of the =
		A1	√C.A.O
	$x - 20 + 3x - 50 = 90^{\circ}$	03	<i>(</i>
9.		M1	√Equation
	$x = 40^{\circ}$	A1	√C.A.O

121/1 MS @Maranda High School Mock Committee-2024

		02	
10.	4y = -3x + 12		
	$y = -\frac{3}{4}x + 3$		
	$m_{QR} = \frac{4}{3}$	B1	√Gradient of QR
	$\tan(180 - \alpha^0) = \frac{4}{3}$	M1	√Equation of gradient
	$180 - \alpha^0 = 53.1^0$		to tangent
	$\alpha^0 = 126.9^{\circ}$	A1	√C.A.O
		03	
11.	$\overrightarrow{PQ} = -\binom{-6}{-3} + \binom{-2}{-1}$		
	$=\binom{4}{2}$		
	$\overrightarrow{QR} = -\binom{-2}{-1} + \binom{6}{-t}$	B1	\overrightarrow{PQ}
	$= {8 \choose 1-t}$		
	then $\overrightarrow{PQ}//\overrightarrow{QR}$	B1	$\overrightarrow{\mathrm{QR}}$
	$\binom{4}{2} = k \binom{8}{1-t}$		
	4 = 8k		
	$k = \frac{1}{2}$	N44	√Attempt to solve for
	$\frac{3}{2} = -\frac{1}{2}t$	M1	the scalar
	$ \begin{array}{ccc} 2 & 2 \\ t & = -3 \end{array} $	A1	√C.A.O
		04	

12	1	N 1 4	/Everagion for
12.	$h = \sqrt{l^2 - \frac{1}{4}}l^2$	M1	√Expression for
	$h = \frac{\sqrt{3}}{2}l$		perpendicular height
	$n = \frac{1}{2}t$		
	$Area = \frac{1}{2} \times l \times \frac{\sqrt{3}}{2}l$	M1	√Substitution into
			formula for Area of an
	$\frac{\sqrt{3}}{4}l^2 = 81$		equilateral triangle
	$l^2 = \frac{81x4}{\sqrt{3}}$		
	$l^2 = 108\sqrt{3} \ cm$	A1	√C.A.O
		03	
13.		B1	120° measured or
	$A \longrightarrow B$		calculated
	\ /		
	\ /		
	\ /		
	\ /		
	\ /		
	οV	B1	√2 nd order drawn
		B1	√Diagram with three
			orders completed
	× ×		
		03	

14.	$(r-6)^2$	$(r-3)^2 =$	= r ²				M1	√Substitution into the
	$r^2 - 18r$		1411	Pythagorean				
	18 <u>+</u>	12		√Resolution of				
	$=\frac{18\pm}{2}$		M1	discriminant				
	= 15 or	: 3		discriminant				
	r = 15		A1	/Discolaria ation of a				
	shaded re	egion = $9 \times$		√Discrimination of r				
	= 108cn	n^2					B1	
								√C.A.O
							04	
15.	< BPQ $=$	90°					M1	√Expression for PBQ
	< PBQ =	$180^{\circ} - 90^{\circ}$						
	=	65^{0}	M1	√Expression for PBR				
	< PBR =	$180^{0}-65$						
	= 13	15 ⁰	A1	√C.A.O				
			03					
16.	Х	0	2	4	6	8	B1	√ ys (all of them)
	у			4.4	00	00		
	y	-6	0	14	36	66		
	Area = $\frac{1}{2}$	$\times 2((6 + 6))$	66) + 2(0	+ 14 + 36))			M1	$\sqrt{Substitution}$ into the
	Area = $\frac{1}{2} \times 2((6+66) + 2(0+14+36))$							rule
	= 172 sq units							√C.A.O

			,
17.	a) Discount $=\frac{5}{100} \times 1250 \times 10 + \frac{8}{100} \times 1250 \times 2$	M1	√Expression for 5%
	= 825	M1	$\sqrt{\text{Expression for 8}\%}$
	profit = $1250 \times 62 - 62 \times 1078 - 825$	M1	√Expression for profit
	=9839	M1	√Expression for %
	%profit $=\frac{9839}{66836} \times 100\%$		Profit
	= 14.7%	A1	
	b) Amount paid for the $1^{st}50$ rods = 1250×50	M1	√C.A.O
	= 62500		√Expression for
	Amount paid for 10 rods under 5% discount $= 12500 - 625$	M1	payments on 1st 50
	= 11875		√Expression when
	Amount of money used to purchase rods above 60		discount is given
	= 168675 - 62500 - 11875	M1	<i>t</i> -
	= 94300		√Expression for
	Number of rods bought under 8% discount		payments above 60
	$= 94300 \div (0.92 \times 1250)$	M1	(m
	= 82 rods		√Expression for
	Total Number of rods = $82 + 10 + 50$		number of rods bought
	= 142 rods		at 8% discount
		A1	√C.A.O
	DVIII	10	
18.	a) Linear scale factor $=$ $\frac{\text{BIX}}{\text{BX}} = \frac{-2.3}{4.6} = -\frac{1}{2}$	B1	√Location of X by
	b) -130° ± 1°		connecting any pair AAI
	· · · · · · · · · · · · · · · · · · ·		BB ^I or CC ^I
		B1	√Measurement where
			one must be negative
		M1	√Substitution into the
			formula for scale factor
		A1	√Follow through

intersection of the perpendicular bisectors $\sqrt{\text{Follow through}}$ B1 B1 $\sqrt{\text{Location of A}^{\text{III}}}$ B1 $\sqrt{\text{Location of A}^{\text{III}}}$ The perpendicular bisectors $\sqrt{\text{Follow through}}$ B1 $\sqrt{\text{Location of A}^{\text{III}}}$ The perpendicular bisectors $\sqrt{\text{Follow through}}$ B1 $\sqrt{\text{Location of A}^{\text{III}}}$ The perpendicular bisectors $\sqrt{\text{Follow through}}$ B1 $\sqrt{\text{Location of A}^{\text{III}}}$ The perpendicular bisectors $\sqrt{\text{Follow through}}$ B1 $\sqrt{\text{Location of A}^{\text{III}}}$ The perpendicular bisectors $\sqrt{\text{Follow through}}}$ The perpendi		D C D D D D D D D D D D D D D D D D D D	B1	√Dropping of any pair of perpendicular bisectors on A'A" B'B" or C'C" √Location of Y at the
B1 $\sqrt{\text{Location of A}^{ }}$ B1 $\sqrt{\text{Location of A}^{ }}$ $\sqrt{\text{Location of B}^{ }}$ and C $\sqrt{\text{Completion of A}^{ }}$ $\text{Completio$		B ^{III} A ^{III}	B1	perpendicular bisectors
B1 $\sqrt{\text{Location of B}^{ }}$ and $C^{ }$ $\sqrt{\text{Completion of A}^{ }}$ B1 $\sqrt{\text{Location of B}^{ }}$ and $C^{ }$ $\sqrt{\text{Completion of A}^{ }}$ B1 $\sqrt{\text{Completion of A}^{ }}$ A1 $\sqrt{\text{Completion of A}^{ }}$ $\sqrt{\text{Completion of A}^{ }}$ A1 $\sqrt{\text{Completion of A}^{ }}$		/ -	B1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			B1	√Location of A ^{III}
CIII 10 19. a) $A = \frac{56^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 10^{2}$ M1 $\sqrt{\text{area of sector RSP}}$ $A = \frac{80^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 7^{2}$ M1 $\sqrt{\text{area of sector RSQ}}$ $\sqrt{\text{C.A.O}}$ $\sqrt{\text{Area of sector RSQ}}$ $A = \frac{80^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 7^{2}$ A1 $\sqrt{\text{C.A.O}}$ $A = 34.22 \text{cm}^{2}$ M1 $\sqrt{\text{Area of } \Delta \text{RPS}}$ $A = 34.22 \text{cm}^{2}$ A1 $\sqrt{\text{Area of } \Delta \text{RPS}}$ $A = 41.45 \text{cm}^{2}$ A1 $\sqrt{\text{Area of } \Delta \text{RPS}}$ $A = 41.45 \text{cm}^{2}$ A1 $\sqrt{\text{Area of } \Delta \text{RQS}}$ A1 $\sqrt{\text{Area of } \Delta \text{RQS}}$ $\sqrt{\text{Area of } $			B1	
19. a) $A = \frac{56^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 10^{2}$ $= 48.89 \text{cm}^{2}$ $A = \frac{80^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 7^{2}$ $= 34.22 \text{cm}^{2}$ b) Area of ΔRPS = $\frac{1}{2} \times 10^{2} \times \sin 56^{\circ}$ $= 41.45 \text{cm}^{2}$ Area of ΔRQS = $\frac{1}{2} \times 7^{2} \times \sin 80^{\circ}$ M1 $\sqrt{\text{Area of } \Delta \text{RPS}}$ $= 41.45 \text{cm}^{2}$ M1 $\sqrt{\text{Area of } \Delta \text{RPS}}$ C.A.O				-
$= 48.89 \text{cm}^2$ $A = \frac{80^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 7^2$ $= 34.22 \text{cm}^2$ b) Area of $\triangle RPS = \frac{1}{2} \times 10^2 \times \sin 56^{\circ}$ $= 41.45 \text{cm}^2$ Area of $\triangle RQS = \frac{1}{2} \times 7^2 \times \sin 80^{\circ}$ $M1 \qquad \sqrt{Area of } \triangle RPS$ $C.A.O$ $M1 \qquad \sqrt{Area of } \triangle RPS$ $C.A.O$ $M1 \qquad \sqrt{Area of } \triangle RPS$ $M1 \qquad \sqrt{Area of } \triangle RQS$			10	
$= 48.89 \text{cm}^2$ $A = \frac{80^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 7^2$ $= 34.22 \text{cm}^2$ b) Area of $\triangle RPS = \frac{1}{2} \times 10^2 \times \sin 56^{\circ}$ $= 41.45 \text{cm}^2$ Area of $\triangle RQS = \frac{1}{2} \times 7^2 \times \sin 80^{\circ}$ $M1 \qquad \sqrt{\text{Area of } \triangle RPS}$ $C.A.O$ $M1 \qquad \sqrt{\text{Area of } \triangle RPS}$ $C.A.O$ $M1 \qquad \sqrt{\text{Area of } \triangle RPS}$ $A1 \qquad \sqrt{\text{Area of } \triangle RPS}$	19.	a) $A = \frac{56^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 10^{2}$	M1	area of sector RSP
$A = \frac{360^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 7^{2}$ $= 34.22 \text{cm}^{2}$ b) Area of $\triangle RPS = \frac{1}{2} \times 10^{2} \times \sin 56^{\circ}$ $= 41.45 \text{cm}^{2}$ Area of $\triangle RQS = \frac{1}{2} \times 7^{2} \times \sin 80^{\circ}$ $M1 \sqrt{\text{Area of } \triangle RPS}$ $C.A.O$ $M1 \sqrt{\text{Area of } \triangle RQS}$		$=48.89 \text{cm}^2$	A1	√C.A.O
$= 34.22 \text{cm}^2$ b) Area of $\triangle RPS = \frac{1}{2} \times 10^2 \times \sin 56^\circ$ $= 41.45 \text{cm}^2$ Area of $\triangle RQS = \frac{1}{2} \times 7^2 \times \sin 80^\circ$ M1 $\sqrt{\text{Area of } \triangle RQS}$ $= 41.45 \text{cm}^2$ M1 $\sqrt{\text{Area of } \triangle RQS}$		$\Delta = \frac{80^{\circ}}{4} \times \frac{22}{4} \times 7^{2}$	M1	√ area of sector RSQ
b) Area of $\triangle RPS = \frac{1}{2} \times 10^2 \times sin56^\circ$ $= 41.45 cm^2$ Area of $\triangle RQS = \frac{1}{2} \times 7^2 \times sin80^\circ$ M1 $\sqrt{\text{Area of } \triangle RPS}$ $= 41.45 cm^2$ M1 $\sqrt{\text{Area of } \triangle RPS}$ $= 41.45 cm^2$ M1 $\sqrt{\text{Area of } \triangle RQS}$			A1	√C.A.O
$= 41.45 \text{cm}^2$ $= 41.45 \text{cm}^2$ Area of $\Delta RQS = \frac{1}{2} \times 7^2 \times sin80^\circ$ $M1 \qquad \sqrt{\text{Area of } \Delta RQS}$				
Area of ΔRQS = $\frac{1}{2} \times 7^2 \times sin80^\circ$ M1 $\sqrt{\text{Area of ΔRQS}}$		b) Area of $\triangle RPS = \frac{1}{2} \times 10^2 \times sin56^\circ$		
- Wi Vinca of ΔiQS		$= 41.45 \text{cm}^2$	A1	C.A.O
- Wi Vinca of ΔiQS		Area of $\triangle RQS = \frac{1}{2} \times 7^2 \times sin80^\circ$	N/1	Area of ADOC
		_		
c) Area = $48.89 + 34.22 - 41.45 - 24.13$ M1 $\sqrt{\text{Area of shaded region}}$				√Area of shaded region
$= 17.53 \text{cm}^2$ $= 17.53 \text{cm}^2$ A1 $\sqrt{\text{C.A.O}}$				
10				7 3.7 1.0
00 3000 PA /Farmanaian faratha	20	3000		√Expression for the
$\begin{array}{c c} 20. & a)(i) & \frac{3}{x} & \\ & & price before increase \\ \end{array}$	20.	$a)(1) - \frac{1}{x}$	יט 	

121/1 MS @Maranda High School Mock Committee-2024

	(ii) $\frac{3000}{x-10}$	B1	√Expression for the
			price after increase
	b) (i) $\frac{3000}{x-10} - \frac{3000}{x} = 10$	M1	√Formation of equation
	$x^2 - 100x - 30000 = 0$	M1	√Quadratic equation
	(x - 60)(x + 50) = 0	M1	√Resolving of
	x = 60 or -50		discriminant/factorizatio
	x = 60 bottles	A1	n
	(ii) New price $=\frac{3000}{50} = 60$		√C.A.O
		B1	
	Old price = $\frac{3000}{50} = 50$		√Both 50&60 seen
	% Increase = $\frac{10}{50} \times 100\%$	M1	
	= 20%	A1	√Substitution
			√C.A.O
	(iii) $\frac{60}{2}$	B1	, v
	= 30		√C.A.O
		10	
21.	$\frac{dy}{dx} = x^2 - x - 12$	M1	√Gradient function
	dx		
	a)i) $at \ x = -1, grad \ of \ \tan gent = -10, y = 11\frac{5}{6}$	M1	$\sqrt{\text{Expression for the}}$
	$eqn: \frac{y-11\frac{5}{6}}{x-1} = \frac{1}{10}$		equation of the normal
	$y = \frac{1}{10}x + 12\frac{5}{6}$	A1	√Equation of the
			normal
	$dy_{-x^2-x-12-0}$	M1	
	$\frac{dy}{dx} = x^2 - x - 12 = 0$	1,11	√Gradient function
	(x+3)(x-4) = 0	A1	equated to zero
	ii) $x = -3$ and $x = 4$		√Roots of quadratic
	$y = 29\frac{1}{6}$ and $y = -34$ coordinates $\left(-3, 29\frac{1}{6}\right)$ and $\left(4, -34\right)$	B1	equation
	$(-3, 29\frac{1}{6})$ and $(4, -34)$	- 1	√Coordinates of the
			stationary points

		1	
	iii) $ \begin{array}{c cccc} x & -4 & -3 & -2 \\ \hline \frac{dy}{dx} & 8 & 0 & -6 \\ \hline & & & & & \\ \hline & & $	B1	Investigation and conclusion of the maximum point √Investigation and conclusion of the minimum point
	(4,-34) is a minimum point $ \begin{array}{c} y^{-axis} \\ 29\frac{1}{6} \\ 2\\ 3 \end{array} $ $ x^{-axis}$ b)	B1	√y intercepts sketched √Turning points sketched
	,	10	
22.	a) time taken to reach Nairobi = $\frac{400}{120}$ = $3\frac{1}{3}$ hours time of arrival = 3 hrs20 min + 8 : 30 am	M1	√Expression for time taken
	= 11:50 am b) Relative speed $= 120 + 80 = 200 \text{km/h}$	A1	√C.A.O
	Relative distance = $400 - \frac{1}{2} \times 80 = 360 \text{km}$	B1	√RS and RD
	$Time = \frac{360}{200}$ $= 1h 48min$	M1 A1	$\sqrt{\text{Expression for time}}$ $\sqrt{\text{C.A.O}}$
	c) Distance = $1_5^4 \times 80$	M1	√Expression for
	= 144km		distance covered in 1h
	Total distance = 40 + 144km		48 min

121/1 MS @Maranda High School Mock Committee-2024

		1	1
	= 184km	A1	√C,A,O
	d) time taken by aeroplane to reach Nairobi = $\frac{400}{200}$	M1	$\sqrt{\text{Expression for time}}$
	300		taken by plane
	= 1h 20min		tanton by plant
	Time taken by taxi = $(11:50am - 10:10am - 1h 30min)$		/ -
	= 10min	M1	√Expression for time
	10		taken by taxi
	$speed = \frac{10}{10}$		
	60		
	= 60km/h	A1	√C.A.O
		10	
23.	a) N55 ⁰ E	B1	√compass bearing
23.	1: 800,000		√Scale
	1.000,000	B1	, coale
	N		
	↑ A A		
		D.4	√Location of C from A
		B1	√Location of C from B
	c	B1	
		B1	√Distance between B
			and C
		B1	Bisection of any two
	Radius = 5.5 cm	ы	sides of triangle ABC
	b)	B1	Location of K
	c) H	B1	Drawing of the
			circumcircle to triangle
			ABC
	4)		
	(d)		Expression for the
	Distance = $\frac{22}{7} \times 2 \times 44$	M1	
	$\int_{0}^{0} \int_{0}^{1} \int_{0$		circumference

121/1 MS @Maranda High School Mock Committee-2024

		= 251.4	km				A1	Circumference(Follow
								through)
							10	
24	a) Th	e mediar	n class is 41-5	50				
		(30	-(12+a)					
	40.	.5 + { = -	$\frac{-(12+q)}{14}$	10 = 4	45.5		M1	√Subtitution into the
	(30	0 – (12 +		formula for median				
	[14	$\left. \frac{(q)}{(q)} \right\} = 0.5$					
	18	- q = 7					M1	√Breaking of the
	q =	= 11						brackets
	r =	= 60 – 55	5 = 5				A1	√C.A.0
	b)							$\sqrt{2^{\text{nd}}}$ unknown
		Manda	· ·		£	c		
		Marks 11-20	f 3	15.5	fx	cf 3	B1	√fxs
		21-30	9	25.5	46.5	12		
		31-40	11	35.5	229.5	23		
		41-50	14	45.5	390.5	37		
		51-60	10	55.5	637.0	47		
		61-70	6	65.5	555.0	53		
		71-80	5		393.0	58		
				75.5	377.5			
		01-90		65.5		00		
		200			$\sum fx = 2800$			/O. I. 171 17 17 11
	Ме	an — —					M1	
							A1	√C.A.O
	Ме	81-90	$\sum_{00} fx = 60$	85.5	171.0 $\sum fx = 2800$	60	M1	√Substitution into the formula for mean √C.A.O

