KAPSABET HIGH SCHOOL

233/2

CHEMISTRY -

Paper 2

MOCK 2023

Name:	. Adm No:
Class:	Candidate's Sign:
Date:	
233/3 CHEMISTRY PAPER 3	

Kenya Certificate of Secondary Education (K.C.S.E.)

Chemistry Practical

TIME: 2 1/4 HOURS

INSTRUCTIONS TO THE CANDIDATES:

- Write your name and index number in the spaces provided
- Sign and write the date of examination in the spaces provided
- Answer all the questions in the spaces provided.
- Mathematical tables and electronic calculators may be used.
- All working MUST be clearly shown where necessary.
- Use the first 15minutes of the 2 ¼ hours to ascertain you have all the chemicals and apparatus tha you may need.

For Examiners use Only

QUESTION	MAXIMUM SCORE	CANDIDATES SCORE
1	15	
2	11	
3	14	
TOTAL	40	

QUESTION 1

- You are provided with solution K and L
- Solution **K** is 1M H₂SO₄
- Solution L contains 8.7g of the hydroxide of metal M {with formulae MOH] in 600cm³ of the solution
- You are required to carry out the experiment to determine;
 - i. Concentration of solution L
 - ii. R.A.M of metal M

Procedure

- 1. Measure 75cm3 of solution K and put into a clean 250cm3 volumetric flask and add distilled water up to the mark -label this solution W
- 2. Fill a clean burette with solution W
- 3. Pipette 25cm3 of solution L into a clean conical flask and add 2 drops of phenolphthalein indicator
- 4. Titrate the solution W in the burette against solution L in the conical flask and record the results in the table below
- **5.** Repeat {3} and {4} above as you fill the table below.

TABLE 1

Fina	burette reading {cm ³ }	
Initia	ll burette reading {cm ³ }	
Volu	me of solution W used {cm³}	
{a}	Calculate the;	[4mks]
	{i} Average volume of solution W used	[1mk]
•••••	{ii} Concentration of solution W	[1mk]
	{iii} Number of moles of solution W that reacted with each 25cm3 portion of	of solution L {2mks}
	y	
{b}	Calculate the; {i} Number of moles of the metal hydroxide {MOH} in solution L that real	acted with each portion

of solution W

[2mks]

Ш

Concentration of solution 1	L		[1mk
Number of moles of the m	etal hydroxide [MOH]	lin 600cm3 of solution L	[2mks
R.A.M of metal M [0=16, H=1]			[2mks
•••••	• • • • • • • • • • • • • • • • • • • •		
	Number of moles of the m	Number of moles of the metal hydroxide [MOH]	Number of moles of the metal hydroxide [MOH]in 600cm3 of solution L R.A.M of metal M

QUESTION 2

You are provided with solution N and P

- Solution N is 2M HCl
- Solution P is 0.16M sodium thiosulphate
- You are required to carry out the experiment below to determine how concentration affects the rate of reaction between HCl and sodium thiosulphate solutions

PROCEDURE

- 1. Fill a clean burette with solution P. Measure 25cm³ of the solution P from the burette into a clean 100cm³ glass beaker and place on a white piece of paper with a cross[x] marked on it
- 2. Add 10cm³ of solution N into it and immediately start a stop watch and note the time taken for the cross beneath the mixture to become invisible
- 3. Clean the 100cm³ beaker and measure into it 20cm³ of solution P form the burette, and add 5cm³ of distilled water into the solution solution
- 4. Repeat step [2] above and note the time taken for the cross to become invisible
- 5. Repeat the experiment using volumes indicated on the table below and as you record the results

TABLE 2

Expt	1	2	3	4	5
Volume of solution p(cm ³)	25	20	15	10	5
Volume of water added to solution p{cm3}	0	5	10	15	20
Volume of solution N	10	10	10	10	10
Time taken for the cross to become invisible [in seconds]					

$\frac{1}{t}$	S ⁻¹					
	1				(4mk	as)
[a]	plot a graph of $\frac{1}{t}$ against volume of solution	P on the grid	d provided		[3mk]	
{b}	From the graph {i} Determine the time taken for the croused	ss to become	invisible when	12.5cm ³	of solution P	

	{ii}	Explain the effect of concentration on the rate of reaction between HCl and so	odium
		thiosulphate solution	[2mks]
• • • • • • •	• • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •

QUESTION 3

- You are provided with solids Q and R
- You are required to carry out the tests below as you record your observations and inferences
 - (i) SOLID Q

-Add about 5cm³ of distilled water to solid Q, shake the mixture thoroughly for a while and then filter it

NOTE: Retain both the filtrate and the residue for the tests below

	TEST	OBSERVATIONS	INFERENCES
(a){i}	Divide the filtrate into 4 portion -To the first portion, add 4 drops of NaOH		
		$\left(\frac{1}{2}mark\right)$	(1mark)
{ii}	Scoop the 2 nd portion on a metallic spatula and ignite on a non-luminous flame		
		$\left(\frac{1}{2}mark\right)$	$\left(\frac{1}{2}mark\right)$
{iii}	To the 3 rd portion, add 2 drops of Pb{NO ₃ } _[aq]		
		$\left(\frac{1}{2}mark\right)$	(1mark)
{iv}	To the 4 th portion ,add acidified KmnO ₄		
		$\left(\frac{1}{2}mark\right)$	$\left(\frac{1}{2}mark\right)$
b{i}	Put the residue in a test tube and add about 2cm ³ of HNO ₃		
		$\left(\frac{1}{2}mark\right)$	(1mark)

{ii}	To the mixture in b{i} above, add 2 drops of KI solution		
		$\left(\frac{1}{2}mark\right)$	$\left(\frac{1}{2}mark\right)$

{ii}SOLID R

	TEST	OBSERVATIONS	INFERENCES
(a)	Scoop a portion of solid R on a Metallic spatula and burn on a Non-luminous flame		00
		(1mark)	(1mark)
(b){i]	Put the remaining portion of solid R into a clean test tube and add about 3cm ³ of distilled water, shake and divide into 2 portions		
		(1mark)	$\left(\frac{1}{2}mark\right)$
{ii}	To the 1 st portion, add 2 drops of acidified KMnO ₄ and warm		
		$\left(\frac{1}{2}mark\right)$	(1mark)
{iii}	To the 2 nd portion add NaCO ₃		
		$\left(\frac{1}{2}mark\right)$	(1mark)

THIS IS THE LAST PRINTED PAGE