CALCULUS

DIFFERENTIATION

KCSE 1989 – 2012 Form 4 Mathematics					
	Answer all the questions				
1.	1990 Q15 P1 A farmer has 1200m of wire to fence three sides of a rectangular paddock. The fourth side is a wall. Find the dimension that will give the maximum possible area(4marks)				
2.	1990 Q11 P2 The gradient of a curve at any point (x, y) is $3x^2$. Given that the curve passes through the point (-2, 3),find its equation.(3 marks)				
3.	1991 Q11 P2 Use differentiation to find the x coordinate of the maximum point for the curve $y = x^3 + 2x^2 - 4x - 8$ (5 marks)				
4.	1992 Q11 P2 Find the equation of the tangent to the curve $y = 2x^2$ at $(2, 8)$ 4marks)				
5.	1993 Q12 P2 Calculate the gradient of the curve $y = x^2 - 3x - 4$ at a point where $x = -1$ (2marks)				
6.	 1993 Q24 P2 A projectile is fired vertically upwards. At anytime <i>t</i> (seconds) its height <i>h</i>(metres) above the ground is given by: <i>h</i> = 30<i>t</i> -5<i>t</i>² a) How fast is it moving at i) <i>t</i> = 1 second? ii) <i>t</i> = 2 seconds? b) How far up does it travel 				
7.	1994 Q11 P1 A rectangular plate has a perimeter of 28cm. Determine the dimensions of the plate that give the maximum area				
8.	1996 Q 19 P1 The equation of a curve us $y = 3x^2 - 4x + 1$				
	(a) Find the gradient function of the curve and its value when x = 2 (2 marks)				
	 (b) Determine (i) The equation of the tangent to the curve at the point (2, 5)(2 marks) (ii) The angle which the tangent to the curves at the point (2, 5) makes with the horizontal (1 mark) iii) The equation of the line through the point (2, 5) which is perpendicular to the tangent in (b) (i) 				
9.	1997 Q 10 P1 The curve $y = ax^3 - 3x^2 - 2x + 1$ has the gradient 7 when x=1. Find the value of a				

10.	1999 O 16 P2		
_	Find the equation of the tangent to the curve $y = (x^2 + 1) (x - 2)$ when $x = 2$		
11.	2000 Q 5 P2		
	The distance from a fixed point of a particular in motion at any time t seconds is given by		
	$S = t^3 - 5t^2 + 2t + 5$ metres		
	2		
	Find its:		
	(a) Acceleration after t seconds		
	(b) Velocity when acceleration is Zero		
	(c) Find all the integral value of x which satisfy the inequalities 2 (2-x) $<4x - 9 < x + 11$		
10	2001 0 11 02		
12.	2001 Q 11 P2		
	A curve is given by the equation: $y = 5x^3 - 7x^2 + 3x + 2$		
	Find the: a) Cradient of the curve at $y = 1$ (2 m/s)		
	a) Gradient of the curve at $x = 1$ (2 mks)		
	Follation of the tangent to the curve at the point (13) (2mks)		
13.	2001 Q 22 P2		
	The displacement x metres a particle after seconds given by. $x = t^3-2t^2+6$, t>0.		
	a) Calculate the velocity of the particle in m/s when t = 2 seconds.		
	b) When the velocity of the particle is zero, calculate its:-		
	i) Displacement		
	ii) Acceleration.		
14.	2002 Q 16 P1		
	Given the curve $y = 2x^3 + \frac{1}{2}x^2 - 4x + 1$. Find the:		
	1) Gradient of curve at $\{1, -1/2\}$		
	If Equation of the tangent to the curve at $\{1, -1/2\}$		
15	2002 O 24 P2		
15.	The displacement's metre of a particle moving. Along straight line after t seconds is given by		
	$S = 3t + \frac{3}{2}t^2 - 2t^3$		
	a) Find its initial acceleration		
	b) Calculate: i)The time when the particle was momentarily at rest.		
	ii)Its displacement by the time it comes to rest momentarily		
	c) Calculate the maximum speed attained.		
16.			
	Find the coordinates of the turning point of the curve whose equation is $y = 6 + 2x - 4x^2$ (3 mks)		
17	2002 0 21 82		
17.	2003 Q 21 P2 a) i) Find the coordinated of the stationary points on the survey $y = y^3 - 2y + 2$ (2m/s)		
	a j i ji mu the coordinated of the stationary points on the curve $y = x^3 - 5x + 2$ (211KS)		
	ii)For each stationary point determine whether it is minimum or maximum		
	b) In the space provided below, sketch the graph of the Function $v = x^3 - 3x + 2$ (2mks)		
18.	2004 0 5 P1		
	The velocity V ms ⁻¹ , of a moving body at time t seconds is given by V = $5t^2 - 12t + 7$.		
	Calculate the acceleration when $t=2$ seconds (3 mks)		

19.	2005 Q 16 P2			
	A stone is thrown vertically upwards from a point O. After t seconds, the stone is S metres from O. Given			
	that $S = 29.4t - 4.9t^2$, find the maximum height reached by the stone (3 marks)			
20.	2005 Q 17 P2			
	A curve is represented by the function $y = \frac{1}{3}x^3 + x^2 - 3x + 2$			
	(a) Find $\frac{dy}{dx}$ (1 mark)			
	dx dx			
	(b) Determine the values of y at the turning points of the curve $y = 1/3 x^3 + x^2 - 3x + 2$ (4 marks)			
21	2006 0 24 04			
21.	2006 Q 24 P1			
	A particle moves along straight line such that its displacement 5 metres from a given point is $f_{1} = f_{2} + f_{3} + f_{4} + f_{5} + f_{5}$			
	$S = t^3 - 5t^2 + 4$ where t is time in seconds			
	fina			
	(a) the displacement of particle at $t = 5$ (2 marks)			
	(b) the velocity of the particle when $t = 5$ (3 marks)			
	(c) the values of t when the particle is momentarily at rest (3 marks)			
	The acceleration of the particle when $t = 2$ (2 marks)			
22	2007 O E D1			
22.	2007 Q 5 FI The gradient of the tangent to the gurge $y = ay^3 + by$ at the point (1.1) is E Calculate the values of a			
	and b (4 marks)			
22	2007 O 13 P1			
23.	2007 Q ISFI The sum of two numbers x and x is 40. Write down an expression, in terms, of x, for the sum of the			
	I ne sum of two numbers x and y is 40. Write down an expression, in terms of x, for the sum of the			
	Squares of the two numbers. Honce determine the minimum value of $x^2 + y^2$ (4 marks)			
	Thence determine the minimum value of x ² + y ² (4 marks)			
24.	2008 O 24 P1			
	The distance s metres from a fixed point 0, covered by a particle after t seconds is given by the			
	equation; $S = t^3 - 6t^2 + 9t + 5$.			
	a) Calculate the gradient to the curve at t=0.5 seconds (3mks)			
	b) Determine the values of s at the maximum and minimum turning points of the curve. (4mks)			
	c) On the space provided, sketch the curve of $s = t^3 - 6t^2 + 9t + 5$. (3mks)			
25	2009 O 1E D2			
25.	2000 Q 13 F2 A partiala mayor in a straight line from a fixed point. Its valuaity Uma 1 oftent accords is given by			
	A particle moves in a straight line from a fixed point. Its velocity vins-1 after t seconds is given by $V_{-}0t^2 = 4t \pm 1$			
	$V = 9L^2 - 4L + 1$			
	Calculate the distance travened by the particle during the timu second. (Sinks)			
26	2011 O 22 D1			
20.	The displacement s metres of a moving particle after t seconds is given by $s-2t^3 - 5t^2 + 4t + 2$			
	Determine			
	a) The velocity of the particle when $t=3$ seconds: (3 m/s)			
	b) The value of t when the particle is momentarily at rest. (2 m/s)			
	c) The displacement when the particle is momentarily at rest. (2 m/s)			
	d) The acceleration of the narticle when $t=3$ seconds (2 m/s)			
27	2012 013 P2			
27.	The granh helow shows the relationship between distance s metres and time t seconds in the interval			
	The graph below shows the relationship between distance's metres and time t seconds in the interval			

INTEGRATION					
KCSE 1989 – 2012 Form 4 Mathematics					
	Answer all the questions				
1.	1989 Q15 P1 A particle moves along a straight line PQ. Its velocity v metres per second after t seconds is given by v = t ² -3t + 5. Its distance from P at the time t = 1 is 6metres. Determine its distance from p when t = 3. (4marks)				
2.	1991 014 P1				
	Evaluate $\int_{-1}^{3} (2x+3)dx$				
	(3 marks)				
3.	1992 Q12 P2 The velocity v m/s of a particle moving along a straight line at any time t (sec) is given by $v = 3t - 2$. Itsdistance x (m) at the time t = 0 is equal to 2. Calculate x whent = 4(4marks)				
4	1994 019 P2				
	The velocity of a particle moving in a straight line after t seconds given by v = 6t - t² + 4 m/s. Calculate a) The acceleration of the particle after 2 seconds (2marks) b) The distance covered by the particle between t = 2 sec and t =5sec. (3 marks) c) The time when the particle will be momentarily at rest. (3 marks)				
5.	1999 Q 16 P1 A particle moves on a straight line. The velocity after t seconds is given by $V = 3t^2 - 6t - 8$. The distance of the particle from the origin after one second is 10 metres.				
	Calculate the distance of the particle from the origin after 2 seconds. (4 marks)				
6.	2000 Q 14 P1 The acceleration $a \text{ m/s}^2$ of a particle moving in a straight line is given by a = 18t - 4, where t is time in seconds. The initial velocity of the particle is 2 m/s				
	a) Find the expression for velocity in terms of tb) Determine the time when the velocity is again 2m/s				
7.	2001 Q 21 P1 (a) The gradient function of a curve is given by $\frac{dy}{dx} = 2x^2 - 5$				
	Find the equation of the curve, given that $y = 3$, when $x = 2$ (4 mks) b) The velocity, vm/s of a moving particle after seconds is given: $v = 2t^3 + t^2 - 1$. Find the distance				

WWW.JITIMU.COM

	covered by the particle in the interval $1 \le t \le 3$ (4 mks)	
0	2002 O 20 P1	
0.	The diagram below shows a straight line intersecting the curve $y = (y_1)^2 + 4$ at the points	P and O The
	line also cuts x-axis at (7, 0) and y axis at (0, 7)	i anu Q. The
	P y-axis	
	$y = (x-1)^{y} + 1$	
	4440	
	a) Find the equation of the straight line in the form y = mx +c.	
	b) Find the coordinates of p and Q.	
	c) Calculate the area of the shaded region.	(8mks)
9	2003 O 16 P1	
).	The velocity Vms ⁻¹ of particle in motion is given by $V = 3t^2 - t + 4$, where t is time in seconds	
	Calculate the distance travelled by the particle between the time t=1 second and t=5 secon	ds.
	(3 mks)	
10.	2004 Q 13 P2	
	The gradient function of a curve is given $\frac{dy}{dx} = x^2 - 8x + 2$.	
	If the curve passes through the point, (0, 2), find its equation. (3 mks)	
11.	2004 Q 22 P2	_
	A particle moves in a straight line. It passes though point 0 at $t = 0$ with velocity $v = 5m/s$. T	The
	acceleration a m/s ² of the particle at time t seconds after passing through 0 is given	h by a = 6t + 4
	(a) Express the velocity v of the particle at time t seconds in terms of t	(3mks)
	(a) Express the velocity v of the particle at time t seconds in terms of t	(SIIIKS)
	(b) Calculate	
	(i) The velocity of the particle when t = 3 (2 mks)	
	(ii) The distance covered by the particle between $t = 2$ and $t = 4$ (3 mks)	
12.	2005 Q 16 P1	
	The acceleration, a ms ⁻² , of a particle is given by a = $25 - 9t^2$, where t in seconds after the passes fixed point Q. If the particle passes Q with velocity of 4 ms ⁻¹ find	particle
	passes incer point o. If the particle passes o, with velocity of 4 lifs ', find	
	(a) An expression of velocity V, in terms of t (2 marks)	
	(b) The velocity of the particle when t = 2 seconds (2 marks)
13.	2005 Q 21 P1	
	The gradient of a curve at point (x,y) is $4x - 3$. the curve has a minimum value of $-\frac{1}{8}$	
	(a) Find	
	(i) The value of x at the minimum point (1 mark) (ii) The equation of the current (4 marks)	
	(i) The equation of the curve (4 marks)	

WWW.JITIMU.COM

	b) P is a point on the curve in part (a) (ii) above. If the gradient of the curve at P is -7, fi coordinates of P (3 marks)	nd the	
14.	2006 Q 15 P2 A particle moving in a straight line passes through a fixed point 0 with a velocity of 9m/s. The acceleration of the particle, t seconds after passing through 0 is given by a = (10 – 2t) m/s ² . Find the velocity of the particle when t – 3 seconds Find the velocity of the particle when t – 3 seconds		
15.	A particle moves in a straight line through a point P. Its velocity v m/s is given by v= 2 -t, in seconds, after passing P. The distance s of the particle from P when t = 2 is 5 metres. Find the expression for s in terms (3 marks)	where t is time erms of t.	
16.	2009 Q 16 P2 A particle moves in a straight line with a velocity V ms ⁻¹ . Its velocity after t seconds is given V= $3t^2 - 6t - 9$ The figure below is a sketch of the velocity-time graph of the particle 1 - 2 - 3 - 4 - 5 Calculate the distance the particle moves between t = 1 and t = 4	en by	
17.	2010 Q 24 P1 A rectangular box open at the top has a square base. The internal side of the base is x cm ² total internal surface area of the box is 432 cm ² . (a) Express in terms x: (i) The internal height h, of the box. (3mks) (ii) The internal volume V, of the box. (1mk) (b) Find: i) The value of x for which the volume V is maximum; (ii) The maximum internal volume of the box.	long and the 4 mks) (2mks)	
18.	2010 Q 11 P2 A particle starts from 0 and moves in a straight line so that its velocity V ms ⁻¹ after time t given by V = $3t - t^2$. The distance of the particle from 0 at time t seconds is s metres.	seconds is	
	a) Express <i>s</i> in terms of <i>t</i> and <i>c</i> where <i>c</i> is a constant.	(1 mark)	
	b) Calculate the time taken before the particle returns to O.	(3 marks)	

WWW.JITIMU.COM