Name:	ADM No:	Class
-------	---------	-------

232/2 PHYSICS PAPER 2 (THEORY) TIME: 2 HOURS JAN 2021

MARANDA HIGH SCHOOL POST MOCK I 2021

Kenya Certificate of Secondary Education (K.C.S.E)

INSTRUCTIONS TO CANDIDATES: -

- Write your name and admission number in the spaces provided above.
- This paper consists of two sections; A and B
- Answer all the questions in section A and B in the spaces provided
- All working must be clearly shown.
- Mathematical tables and electronic calculators may be used.

(Take Speed of light, $c = 3.0 \times 10^8$ m/s; Planck's constant, $h = 6.63 \times 10^{-34}$ Js)

For Examiners' Use Only:

SECTION	QUESTIONS	MAXIMUM SCORE	CANDIDATE'S SCORE
A	1-15	25	
	16	11	
	17	12	
В	18	11	
	19	12	
ii.	20	09	
1	TOTAL	80	

This paper consists of 13 printed pages. Candidates should check to ascertain that all pages are printed as indicated and that no questions are missing

SECTION A (25 MARKS)

SECTION A (23 MAIGLS)
1. Explain why sharp shadows support the theory that light travels in straight lines. (1 mark)
11:55 and from ordinary chemical
2. a) Give one reason why radioactive disintegration is different from ordinary chemical
changes?
changes.
3. Figure 1 below shows part of a circuit containing three capacitors of 4μF, and 5μF and 6μF
3. Figure 1 below shows part of a chedit containing the say
respectively.
A Suf
Fig.1
Determine the p. d across the 5µF capacitor given that the total charge stored in the capacitors is
0.0000052 C. (2 marks)
0,00000024 0.

4. State one causes of power loss in long distance transmission wires and how these loses can be minimized

(1mk)

5.	State the meaning of the term "threshold frequency" as used in photoelectric emission. (1mark)
	,
• • •	
6.	Figure 2 below shows the path of light passing through a rectangular block of perpex, placed in air.
	47.5° Fig.2
	Calculate the refractive index of the Perspex. (2 marks)
	•
•••	······································
•••	
•••	
7.	Two similar razor blades are placed one on a wooden block and the other on a soft iron block as shown in Figure 3 below
	N
	Soft iron Razor blade Wooden block
	was observed that the razor blade on the wooden block was attracted to the magnet while the ner on the soft iron block was not. Explain. (2 marks)

			allel current carry pposite directions		P and Q placed	close to one	
				X			
	Fi	g.4	P	Q			
			field pattern form			(1mk)	
	he table in figu r avelength	re below sho	ws part of the elec	ctromagnetic spe	ctrum in order	of decreasing	
	A	В	INFRA RED	VISIBLE	С	D	
			RADIATION	LIGHT			
(0)	How are waves	C produced?				(1mk)	
(a)	110W are waves	c produced:				(11111)	
2							

(b)_	State one use o	f the wave D				(lmk)	
			operated from a 2				
			d 100W 240V ar				
			ner given that the			0 per unit	
((Take 1 month	n = 30 days	s and the standi	ng charge is sl	h. 150)	(2mks)	
				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
,,,,,,,							

12. Figure 5 below shows an eye defect

Fig.5

	Use a ray diagram to show how the defect above could be corrected.	(2mks)
13.	A girl standing at a distance claps her hands and hears an echo from a tall building later. If the speed of sound in air is 340m/s, determine how far the building is.	2 seconds (2mks)
14.	A current-carrying conductor AB is in a magnetic field as shown in the figure below	₩.
•	direction of A cursent	

(a) Indicate the direction of force F acting on the conductor.

(1mk)

15. Figure 6 below sh	ows a wave form of voltage displayed on the screen of	a C.R.O.
Account of the Park Community	Fein	
į į		
Fig 6		
If the Y- G	tain calibration is 7.5V per cm and the time base is 2.0	ms per cm.
Determine		
I. The peak to	peak voltage of the input signal.	(2 mks)
II. The frequer	ncy of the signal.	(1 mks)
I. The peak to	peak voltage of the input signal.	(2 mks)

SECTION B (55 marks)

Answer all questions in the spaces provided

16		
a.	List two sources of back ground radiation in Radioactivity	(2mks)
b.	A radioactive isotope $^{232}_{90}$ T emits two alpha particles and two beta particles a	as a result of
	four successive disintegration. If the daughter product is represented as $\overset{A}{Z}Y$. values of A and Z.	Work out the (2 marks)
c.	A certain radioactive material has the average count rate of 82 counts per setime of 210 seconds, the count rate had dropped to 19 counts per second. The background count rate remained constant at 10 counts per second. What is the material	e average
d.	Differentiate between nuclear fusion and nuclear fission as used in radioacti	
	State any two properties of beta particles	(2mrks)
• • • • •		
17.		
a)	Define the term electromagnetic induction	(1 mark)

		100 P
b	State two factors that determine magnitude of e.m.f induced in a coil.	(2mrks)

c) State Lenz's	s a law of electromagnetic induction.	(1mark)

d) Figure 7 bel	low shows a bar magnet being moved into a coil of ins	sulated copper wire
	a centre-zero galvanometer.	and the same of th
N Ma	otion of Pagnet	
	Galvanomet	
	Galvanomet	En-
ii. State of th 	Fig. 7 w on the diagram the direction of induced current in the and explain clearly what is observed on the galvanor ne magnet is moved into and then withdrawn from the	meter when the S-pole coil. (2marks)
	er has 1000 turns in the primary and 50 turns in the sec	
alternating e.	m.f connected to the primary is 240V and the current	is 0.5A.Thetransformer
i. secondary	cient.Determine the:	(2mortes)
,	·	(2marks)

ii. Current in	the secondary winding.	(2marks)
	······································	

f) Figure 8 below shows a simple d.c generator

Fig. 8

The coil is rotated in a clockwise direction; indicate using an arrow on the figure the direction of

the induced current as the coil passes the position shown.

(1mk)

18. a)

i) What is the meaning of the term Photo-electric effect.

(1mk)

ii) The minimum frequency of light which will cause Photoelectric emission from a metal surface is 5.6 x 10¹⁴ Hz. If the metal surfaces irradiated with electromagnetic waves source of frequency is (6.8 x 10¹⁴Hz). Determine.

I The work function of the metal surface (h = 6.63 x 10⁻³⁴ JS)

(1mk)

II The energy of the source radiation.

(2mks)

	***************************************	• • • • • • • • • • • • • • • • • • • •			

b).Figure 9 be	elow shows the variat	ion of photoele	ctric current wit	h applied volt	age when
	nt surfaces a and b are				
	in the figure to answ				
		I(A)			
				×	
		-			
		a /			
		b			
		C i		V(v)	
36	Fig 9				
i)State and explain	between surface a and	d b which one l	nas a higher wor	k function.	(3mrks)

ii) on the space pro-	ided sketch the graph	n of photoelecti	ric current agains	st applied volt	age when
light of two differen	at intensity but same f	requency is use	ed to illuminate a	a given surfac	e. (2mrks)
19. (a) State the Oh	m's law				(1mark)
	,				
	******************				* * * * * **********
	***********************		•••••••		
	*				

(b)		re provided with the following apparatus; a coil of nichrome ter, voltmeter, connecting wires, switch and rheostat.	wire, two dr	y cells,
	(i)	Draw a circuit diagram that can be used to verify Ohm's la	w	(lmark)
	×			
	ii)	Describe how the measurements obtained can be used to ve	erify Ohm's la	aw
			,	(3marks)

		·······		
(c)	Study	Figure 10 below and answer the questions that follow		
	,	7		
		3V		
		,—————————————————————————————————————		9
		(A)		
		Γ		
	,			
		-5Ω		
		452	Fig. 10	
			rig. 10	
á	Detern			
	(i)	The combined resistance		(3 marks)
• • • •				
• • • •				

(ii) The total current flowing through the 6Ω resistor	(2 marks)
(iii) Voltage across the 7Ω resistor	(2marks)

	(2 1)
20. a)Using a diagram explain how doping produces a p-type semi-conductor.	(3 marks)
(ii) What is biasing?	(1 mk)
()	
*	
(''') TI = 1' = -1 1 -1 -1 -1 -1 -1 -1	
(iii) The diagram below shows a circuit with a p-n junction and a very low	power bulb.
n P	
· · · · · · · · · · · · · · · · · · ·	
) . T	
, h	
State with reason the observations made on the bulb when the switch is clo	osed. (2 mrks)

b) i) what is westification	/1I.S
b) i) what is rectification.	(1mk)

ii) In the space provided below draw a complete circuit to show half wave rectification.
(2mrks)

